An Introduction to Python
Geoprocessing

This video will introduce you to running ArcGIS tools within Python.

The arcpy object

Gives script access to the tools in ArcGIS.

Typically created at the beginning of the
script.

Always named arcpy in ArcGIS 10.

Create by importing the arcpy module.
— A module is the Python version of a toolbox.

arcpy

With only the few basic concepts we've discussed previously, we can now learn how
to use Python to run some tools in ArcGIS. Python is able to access ArcGIS’s
capabilities through a module called “arcpy.” A module in Python is the equivalent
of a toolbox in ArcGIS — it is a set of related tools with related purposes. In order for
Python to access the arcpy module, we first need to plug-in ArcGIS to our script by
typing in “import arcpy.” The import command is used anytime you need to load a
module in Python — this is usually done first thing in a script.

Checking out extensions

Check out extension license if extension tools are
needed.
arcpy.CheckOutExtension ("spatial")

object method code name
in quotes

Below are the extension names and their extension code names:

= 3D Analyst Tools—3d

= Data Interoperability—datainteroperability
= Geostatistical Analyst Tools—geostats

= Network Analyst Tools—network

= Spatial Analyst Tools—spatial

Many of ArcGIS’s tools are available through extensions — these extensions contain
specialized tools which enhance the capabilities of ArcGIS. In order to use these
tools, you need to have access to the appropriate extension license(s) and your
script will need to check out the license.

To check out an extension license in your script, you’ll need to use a method of
arcpy called “CheckOutExtension”. Recall that to use a method of an object, you
need to specify: 1) the object name, 2) a period, 3) the method name, and 4) the
method parameters. In this case, the object is arcpy, the method is
CheckOutExtension and the parameter is the name of the extension that you want
to use. Extensions should be referred to by their code name as indicated in the
table.

Allow outputs to be overwritten

Existing outputs cannot be overwritten unless
script is given permission to do so.

Highly recommended to give scripts this
permission.

— Script will crash if it needs to overwrite existing
file and does not have permission.

arcpy.env.overwriteOutput = 1

) property true
environment

properties

Arcpy will not allow you to overwrite any existing GIS data unless you first give it
permission to do so. It is a good idea to give this permission in most scripts because
it will make debugging your script much easier. The debugging process removes
errors in your script and you will likely need to run your script many times before it
works correctly. Each time you rerun the script, it will need permission to overwrite
any files that were created on previous runs, otherwise the script will crash.

To give your script permission to overwrite existing files, you’ll need to access
arcpy’s environment properties (i.e. env) and set the overwriteOutput property to 1
(i.e. true). The env is a toolbox within arcpy that allows you to set global parameters
which can affect the operation of all the ArcGIS processes in your script.

Example code — setting up arcpy

Untitled EEX

File Edt Format Run Options Windows Help

import modules... -

arcpy
check out extensions...
arcpy.CheckOutExtension("spatial™)

allow outputs to be overwritten...-
arcpy.env.overwriteOutput = 1
=)

Ln: 11 Col: 0

Let’s look at an example of how the steps we've just discussed will appear in a
script. Notice that the lines that start with the # symbol are colored in red — these
are comment lines that the script will ignore. The lines below the comment lines are
the actual script statements that contain instructions for the computer.

1) The 15t statement in the example script imports the arcpy module which gives the
script access to ArcGIS’s capabilities

2) The 2"d statement checks out an ArcGIS extension. If your script doesn’t need
any extension tools, then skip this step in your script.

3) The 3" statement gives the script permission to overwrite existing files.

File names

Most scripts will use files for input and output data.

To find a file, the script needs to know the file's
location and name.

Always put an r before a file pathname string
(more on this in the next lecture)...

file pathname

N
~ TN

@c:

r file location file name
(a.k.a.workspace)

In most scripts, you will need to work with data stored in files. In a script, file names
are always treated as strings and so they’re enclosed in quotes. In Python, you
should always put an r before a file name — for reasons we’ll discuss in detail in the
next lecture.

In this course, I'll refer to a complete file name as the “file pathname” — this contains
all the information needed for the script to locate the specific file. The first part of the
pathname is the “file location” which is also called the “workspace.” The “file name”
is the name of the specific file and the “file extension” is the letters following the
period after the file name. The file extension indicates the type of file.

A default workspace

File locations are often long and inconvenient to
specify for each file...

— “C:\classes\ModelBuilder _workshop\Final MB_Docs\Mo
delBuilder\Data\ModelBuilder Data”

You can set a default workspace for arcpy.

— No need to specify location for files that are in the
default workspace.

— File location still needs to be specified for files that are
not in the default workspace.

When a script is working with multiple files that are stored in the same location (i.e.
workspace), then we can set a default workspace for arcpy. Once the workspace is
set, then you will no longer need to specify the file location for files that are located
in that workspace. However, you will need to specify the workspace for files stored

in other locations. Setting a default workspace can make the script more efficient to
write and easier for you to read.

Setting the arcpy workspace

arcpy.env.workspace = r"C:\Python workshop"

default folder

The workspace only applies to geoprocessing
operations

Only one workspace can be set at a given time

— Often most efficient to use workspace for temporary
data

The workspace can be changed at anytime

To set a default workspace for arcpy, you'll need to set the “workspace” property of
arcpy’s environment settings. Remember to include the r before the file location.
Generally, you can set only one workspace for arcpy at a given time (the exception
is when using the spatial analyst extension).

Using ArcToolbox tools
(a.k.a. ArcTools) in a script

Input parameters vary for each ArcGIS tool.

Look up the help documentation for a given tool to
find out how to use it in a script:

— right-click on the tool in ArcToolbox and select Help.

— scripting syntax is toward the bottom of the page.

Now that we’ve taken care of the preliminary set setup of our script, we can start
working with ArcTools (i.e. tools in ArcToolbox). There are hundreds of ArcTools that
are available for use in a script and each tool requires a different set of parameters
to make it work. Fortunately, ArcGIS contains thorough documentation on how to
use each ArcTool and run them in a script.

Searching for Tools

e Tl 2| v

Qverview ALL Maps Data T
i il @& % & >) Local Search v
JI Viewer System Toolboxes :
| @ 30 Analyst Tools ALL Maps Data Tools
\EE) Table Of g @ Analysis Tools - -

C hy Tool 1 1

;[3 Catalog | @ Cartography Tools Ichp (analysis) Q

@ Conversion Tools

@ Search ° Data Management T

[pm @ Editing Tools Search returned 2 item-Open hel age |Hele
! Image Anal @ Geocoding Teols p p p g

@ Geostatistical Analys
. Linear Referencing T| P - -
. Multidimension Tools Y C|ID (Ana'vSIS)

@ Network Analyst Too Extracts input features that overlay the cli...
@ Parcel Fabric Tools toolboxes\system toolboxes\analysis too...
. Samples

. Schematics Tools
@ server Tools
‘ Spatial Analyst Tools

. Spatial Statistics Tools

@ Tracking Analyst Tools GO tO tOO|

Find My Custom Toolboxes...

10

To find a tool in ArcToolbox, you can use the search window in ArcGIS or
ArcCatalog. In the search window, select the “Tool” tab and then enter the name of
the tool below. The search will return a list matching the name you entered — click
on the links below to open the help page or to be taken to the tool in ArcToolbox.

Tool Help Documentation
Open...
=@ Data Management | | patch... Help documentation
+ 6 Data Comparisq
+ & Database describes...
+ & Disconnected E .
+ & Distributed Geo| (5] Copy tool's purpose
i ? Domals . % how tool works
right-click on usage tips
tool, toolset, or b how to use in
toolbox command line or script
- Generalization Help I
% Aggregate | =] Item Description...
Collapse DU s pronerties...
) ™ operties
& Eliminate
1

The documentation for ArcTools can be accessed in ArcToolbox either through
ArcGIS or ArcCatalog. Locate the tool of interest in ArcToolbox and right-click on it,
then select Help from the menu.

ArcToolbox

Dissc;lve (Data Management)

/ brief description

Agaregates features based on specified attributes.

e e S pryvwerygr description

¥ Illustration

SEER

1

> <€— illustration

INPUT / usage tlpS UTPUT

¥ usage tips

e The attributes of the aggregated features may be summarized using a statistic type. For example, when
aggregating sale territ be summed to obtain the

total sales revene forl Serol| down to Script Syntax

The statistic type used ass as a single field:

statistic_field.
Text attribute fields may be summarized usin tistics First or Last. Numeric attribute fields mav be
12

The tool help page will include a description of the tool and tips on how to use it
properly. There will be a section for Python scripting at the bottom of the page.

Tool script syntax

Syntax =
Clip_analysis (in_features, clip_features, out_feature_cla General Syntax
Par t Explanati Data Type
in_features The features to be clipped. E::;‘:'e
dlip_features The features used to dlip the input Eeature
featu ayer
out_feature_cass yha¢ Pa ram eter Feature
. . Class
cluster_tolerance | .. deSCI'IDtIOI'lS all Linear unit

(Optional) feature coordinates (nodes and vertices)
as well as the distance a coordinate can
move in X or Y (or both). Set the value to
be higher for data with less coordinate
accuracy and lower for data with
extremely high accuracy.

Code Sample

import arcpy

£zom azepy import enf EX@Mple code

env.workspace = "c:/basedata/vegetation.gdb"
arcpy.Clip analysis("vegetation"”, "stream buffers”, "veg withi

< >

13

The “Script Syntax” section includes the general syntax statement, a description of
the tool’s parameters, and an example code from a Python script that implements
the tool.

Script example

Code Sample

import arcpy
from arcpy import env

env.workspace = "c:/basedata/vegetation.gdb”
arcpy.Clip analysis("vegetation", "stream buffers", "veg withi

< >

Clip Example (Python Window)
The following Python Window script demonstrates how to use the Clip function
in immediate mode.

import arcpy
from arcpy import env

env.workspace = "C:/data"
arcpy.Clip analysis("majorrds.shp"”, "study quads.shp", "C:/out

< >

Clip Example 2 (Stand-alone Python Script)
The following Python script demonstrates how to use the Clip function in a
stand-alone script.

14

In this course, we will focus exclusively on “stand-alone” scripts — be sure to use the
correct sample code as your guide. The Python window is for use within ArcGIS and
the syntax may be somewhat different.

Setting up an ArcTool statement

Copy the general syntax line from the help page...

Clip_analysis (in_features, clip_features, out_feature_class, {cluster_tolerance})

Prepend tarcpyy’ to beginning of the statement...
Clip_analysis(in_features, clip features, out features, {cluster tol})

Substitute in parameter values (note: the workspace has
been set for the input files)...

* You can omit optional parameters or use an empty string.

arcpy.Clip analysis("soils.shp", "town.shp", town_soilsf)

optional parameter
15

To implement an ArcTool in Python, | recommend copying the general syntax line
directly from the help page into your script — this will avoid any typos and also help
you to put the parameter values in the correct order. The parameter values should
be specified in the same order as the parameters listed in the general syntax line —
the order allows arcpy to match the values to the correct parameters. Empty quotes
can be specified for optional parameters if you want to use the default setting.

15

Setting ArcTool parameter values

Set the geoprocessor workspace (optional)...
arcpy.env.workspace = r*“C:\PythonClass\Data”
Assign variables to parameter values (optional)...
town soils = r"C:\Python workshop\Output\town s . Sl
Enter parameter values in correct sequence...

Clip_analysis (in_features, clip_features, out_feature_class, cluster_tolerance)

Parameter Explanation

refer to help —p E:Igsggrﬂ_;glerance The minimum distance separat
documentation P coordinates (nodes and vertic
the distance a coordinate can
far hath) Youi can <ot the val

arcpy.Clip analysis(" ~3hp", "town. Wy town seoils, "

16

Let’s step through the process of writing an ArcTool statement in Python.

1) The first step sets the default arcpy workspace and is optional. I've set the arcpy
workspace to my “input data” folder so, in the ArcTool statement, | won’t need to
specify the file location for any files located in this folder.

The output file in this example is not in the arcpy workspace so I've assigned it a
variable which will make it more convenient to refer to this file in the ArcTool
statement.

To write the actual ArcTool statement, first copy the general syntax line from the
help documentation page to your script. Then add arcpy. to the beginning of the
statement to create the proper syntax. For each parameter, check the

description in the help page to understand the values required for each
parameter, then enter the parameter values in place of the parameter names:

1) In this case, the first parameter is the “input_features” and is a required.
For this parameter, I've specified “soils.shp” — | don’t need to include the
file location because the file is located in the arcpy workspace that | set

2)

3)

on a previous line.

2) The second parameter is the “clip_features” which is also required. I've

specified “town.shp” which is also located in the arcpy workspace.

3) The 3" parameter is the “output_features” which is required — here, I've
specified the town_soils variable which | defined on a previous line.

16

4) The final parameter, “cluster_tolerance”, is optional so | can choose to
ignore the parameter. In this case, I've use empty quotes so that the
default parameter value will be used. Alternatively, | could have omitted the
guotes since there are no further parameters that | want to specify.

16

Auto-complete feature for arcpy

Can help with syntax for arcpy statements

Useful when you are already familiar with the syntax for a
statement.

Works in both interactive and script window

>>> arcpy <— 1) Import arcpy in interactive window
[2) After period, hit Tab or ctrl-enter

arcpy ? [edGecnetry_nansoe & 3) Start typing and/or scroll to select

CheckOutExtension —I
i 4) Use Tab to auto-complete
lean_arc
ClearEnvironment
ClearWorkspaceCache_rr
Clip_arc
Clip_management _:] 17

Python has an auto-complete feature which can help you enter statements more
quickly and without typos. To use the auto-complete for arcpy statements, you will
first need to import arcpy in the Python Shell. Once arcpy has been imported, auto-
complete will work in both the Python Shell and the script window.

17

Basic_Geoprocessing Using ArcTools_v10.py - C:/Python_workshop/Example_scripts/Basic_Geoprocessing Using ArcTools_v10.py
Fie Edt Format Run Options Windows Help

import arcpy # create arcpy r

allow outputs to be overwritten...
arcpy.env.overwriteOutput = 1

set arcpy workspace...
arcpy.env.workspace = r"C:\data"

select wetland soils...
arcpy.Select_analysis("soils.shp”, "wetlands.shp", "HYDRIC ="Yes™)

assign variable to file name...
summaryTable = r"C:\results\summary.dbf"

summary statistics — calculate total wetland acreage...
arcpy.Statistics _analysis("wetlands.shp", summaryTable, [["ACREAGE", "SUM"]]) _|

v

Ln: 21 Col: 0

In the script window, enter your script. Note that scripts run from the top statement
down — so lines above can affect lines below, but not vice versa.

18

